LIMITES D’UNE FONCTION série exercice 1
LIMITES D’UNE FONCTION – 2ème année Bac – 2025/2026
- \( \lim_{x \to -1} \dfrac{x^3 + 2x^2 + 2x + 1}{x + 1} \)
- \( \lim_{x \to +\infty} \dfrac{\sqrt{x^2 - 1}}{x} \)
- \( \lim_{x \to 0} \dfrac{\sqrt{x + 4} - \sqrt{3x + 4}}{\sqrt{x + 1} - 1} \)
- \( \lim_{x \to 5} \dfrac{x^2 - 25}{x^2 - 10x + 25} \)
- \( \lim_{x \to -\infty} \left( \dfrac{x}{x^2 + 1} - \dfrac{1}{x + 3} \right) \)
- \( \lim_{x \to 4} \dfrac{x - 3}{\sqrt{x + 5} - 3} \)
- \( \lim_{x \to -\infty} \left( \sqrt{x^2 - 7} - x \right) \)
- \( \lim_{x \to +\infty} -3x\sqrt{x + 7} \)
- \( \lim_{x \to -\infty} \left( \sqrt{x^2 - 1} + x \right) \)
- \( \lim_{x \to 2} \dfrac{\sqrt{x^2 + 1} - \sqrt{x + 3}}{x - 2} \)
- \( \lim_{x \to +\infty} \left( \sqrt{x^2 - 3x - 1} - x + 3 \right) \)
- \( \lim_{x \to -3} \dfrac{\sqrt{4x + 28} - 4}{x + 3} \)
- \( \lim_{x \to 1} \dfrac{\sqrt{x^2 + 1} - \sqrt{2x}}{x - \sqrt{x}} \)
- \( \lim_{x \to 16} \dfrac{\sqrt{x} - 4}{16 - x} \)
- \( \lim_{x \to +\infty} \dfrac{-3x^2 + x - 6}{x^2 + 1} \)
- \( \lim_{x \to 1} \dfrac{2x + 1}{x - 1} \)
- \( \lim_{x \to 3} \dfrac{2 - x}{(x - 3)^2} \)
- \( \lim_{x \to 2} \dfrac{x^3 - 8}{x^2 - 3x + 2} \)
- \( \lim_{x \to 4} \dfrac{\sqrt{x + 2}}{4 - x} \)
- \( \lim_{x \to 2^-} \dfrac{x - 3}{x - 2} \)
- \( \lim_{x \to 1^+} \dfrac{x + 2}{x^2 + x - 2} \)
- \( \lim_{x \to 0} \dfrac{\sin(2x) - \sin(5x)}{3x} \)
- \( \lim_{x \to 0} \dfrac{\sin(3x)}{2x} \)
- \( \lim_{x \to 5} \dfrac{-2x + 1}{(x - 5)^2} \)
- \( \lim_{x \to \pi/6} \dfrac{\sin(x) - 1/2}{x - \pi/6} \)
- \( \lim_{x \to 0} \dfrac{1 - \cos(3x)}{x^2} \)
- \( \lim_{x \to 0} \dfrac{\tan(3x)}{\sin(2x)} - 2 \)
Bonne chance !
Série préparée par : Mr ELASRI MOHCINE
🌐 www.blogdelajeunesse.com